We’re very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been to provide to you a safe and dependable supply of drinking water. Our water source is groundwater drawn from 1 well located to the north side of the campus. The well is approximately 500 feet deep and produces from the Garber-Wellington aquifer.

We’re pleased to report that our drinking water is safe and meets Federal and State requirements.

This report shows our water quality and what it means.

If you have any questions about this report or concerning your water utility, please contact Jim Stephens at 405-425-5290. We want our valued customers to be informed about their water utility.

Oklahoma Christian University routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2005. (Some of our data may be more than one year old because the state allows us to monitor for some contaminants less often than once per year.)

In the table below you will find many terms and abbreviations with which you might not be familiar. To help you better understand these terms we've provided the following definitions:

- Parts per million (ppm) or Milligrams per liter (mg/l)
- Parts per billion (ppb) or Micrograms per liter (ug/l)
- Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

- **Action Level (AL)** - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

- **Maximum Contaminant Level (MCL)** - The MCL is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

- **Maximum Contaminant Level Goal (MCLG)** - The MCLG is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

There are seventy-six regulated contaminants that community water systems are required to test for including microbiological, radioactive, inorganic, synthetic organic including pesticides and herbicides, and volatile organic contaminants. We are exempt from testing for synthetic organic contaminants based upon a vulnerability assessment conducted by the Oklahoma Department of Environmental Quality. The table on the next 2 pages shows only those contaminants that were detected.
TEST RESULTS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Level Detected</th>
<th>Range Detected</th>
<th>MCL</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiological Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Total Coliform Bacteria</td>
<td>N</td>
<td>1</td>
<td>0</td>
<td>1 positive</td>
<td>0</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>2. Fecal coliform and E.coli</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive</td>
<td>0</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>Radioactive Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Beta/photon emitters (pCi/l)</td>
<td>N</td>
<td>5.17675 pCi/l</td>
<td>4.752-5.951 pCi/l</td>
<td>50</td>
<td>0</td>
<td>Decay of natural and man-made deposits</td>
</tr>
<tr>
<td>5. Alpha emitters (pCi/l)</td>
<td>N</td>
<td>2.882 pCi/l</td>
<td>2.882 pCi/l</td>
<td>15</td>
<td>0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>6. Combined radium (pCi/l)</td>
<td>N</td>
<td>NA</td>
<td>NA</td>
<td>5</td>
<td>0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Arsenic (ppb)</td>
<td>N</td>
<td>8.1 ug/l</td>
<td>8.1-8.1 ug/l</td>
<td>50</td>
<td>n/a</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes</td>
</tr>
<tr>
<td>10. Barium (ppb)</td>
<td>N</td>
<td>44.5 ug/l</td>
<td>44.5-44.5 ug/l</td>
<td>2000</td>
<td>2000</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>14. Copper (ppm)</td>
<td>N</td>
<td>0.021 mg/l</td>
<td>0</td>
<td>*AL=1.3</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
</tbody>
</table>
16. Fluoride (ppm) | 0 | 0 | 4 | 4 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories

17. Lead (ppb) | 0 | 0 | *AL=15 | 0 | Corrosion of household plumbing systems, erosion of natural deposits

19. Nitrate (ppm) (as Nitrogen) | 0.33 ug/l | 0.31-0.35 ug/l | 10 | 10 | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

20. Nitrite (ppm) (as Nitrogen) | 0.24 | 1 | 1 | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

21. Selenium (ppb) | NA | NA | 50 | 50 | Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines

*Action Level – 90% of samples must be below this level.

(1) Total Coliform. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

(2) Fecal coliform/E.Coli. Fecal coliforms and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.

(17) Lead. Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

(19) Nitrate. Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.

EPA is reviewing the drinking water standard for arsenic because of special concerns that it may not be stringent enough. Arsenic is a naturally occurring mineral known to cause cancer in humans at high concentrations.

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

As you can see by the table, our system had no violations. We are proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water IS SAFE at these levels.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells.
As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water before we treat it include:
* **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
* **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
* **Pesticides and herbicides**, which may come from a variety of sources such as agriculture and residential uses.
* **Radioactive contaminants**, which are naturally occurring.
* **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Please call our office if you have questions.